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Abstract – Based on the tight-binding method and density functional theory, band structures
and transport properties of T-graphene nanoribbons are investigated. By constructing and solv-
ing the tight-binding Hamiltonian, we derived the analytic expressions of the linear dispersion
relation and Fermi velocity of Dirac-like fermions for armchair T-graphene nanoribbons. Multiple
Dirac points, which are triggered by the mirror symmetry of armchair T-graphene nanoribbons,
are observed. The number and positions of multiple Dirac points can be well explained by our
analytic expressions. Tight-binding results are confirmed by the results from density functional
calculations. Moreover, armchair T-graphene nanoribbons exhibit negative differential resistance,
whereas zigzag T-graphene nanoribbons have linear current-bias voltage characteristics near the
Fermi level.

Copyright c© EPLA, 2014

Introduction. – Graphene [1] has attracted much sci-
entific interest for both the understanding of fundamen-
tal physics and promising future applications [2,3]. The
unique electronic properties of graphene arise from the ex-
istence of Dirac cones, where the valence and conduction
bands meet linearly at a single point in the momentum
space, called Dirac point [2,4–6]. The linear dispersion
relation around the Dirac point in the band structure
(BS) of graphene is attributed to the graphene’s hon-
eycomb lattice [6]. Under this crystal symmetry, the
electrons and holes in graphene can be described by
Dirac equation and named Dirac fermions. Recently,
it is reported that the Dirac points also exist in the
two-dimensional carbon-based materials without honey-
comb crystal symmetry [7–9], such as T-graphene [7],
6(H2),14,18-graphyne [8] and 6,6,12-graphyne [9].

Enyashin et al. [10] have studied systematically the
stability, structural and electronic properties for twelve
types of carbon allotropes. At almost the same time, Liu
et al. [7] focused on T-graphene, which has a tetragonal
symmetry. Buckled T-graphene is considered to be more

(a)E-mail: xhyan@nuaa.edu.cn

stable than other carbon allotropes above 940K [11,12]
and it is also predicted to have Dirac-like fermions due to
its linear dispersion and high Fermi velocity [13,14]. Also,
they studied the buckled T-graphene nanoribbon and
found similar Dirac-like fermion behaviour. Considering
the unique properties of buckled T-graphene, we pay at-
tention to another allotrope of carbon, planar T-graphene,
which has a metallic BS [7]. Planar T-graphene is consid-
ered to be thermodynamically metastable due to the com-
parable formation energy of −8.73 eV/atom [7]. Even in
terms of free energy, planar T-graphene has a better ther-
modynamic stability than other carbon allotropes except
graphene below 900K.

As we know, it is important to know the structural de-
pendence of electronic and transport properties for the
application of nanostructures, since geometry structure is
an important factor to tune the performance of device.
In this paper, we studied BSs and transport properties of
both TGNR with armchair edges (ATGNR) and TGNR
with zigzag edges (ZTGNR) based on tight-binding (TB)
method and density functional theory (DFT). Some inter-
esting results, such as multiple Dirac points, are found.
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Fig. 1: (Colour on-line) Atomic model of T-graphene and TGNRs. (a) A T-graphene supercell. (b) Symmetric ATGNR (with
even N). (c) Asymmetric ATGNR (with odd N). (d) ZTGNR.

Structural models of TGNRs. – The unit cell of
a planar T-graphene is shown in fig. 1(a) (see the black
square). It consists of four carbon atoms and the lat-
tice constant is 3.46 Å, which is consistent with previ-
ous result [7,10]. After structural relaxation, the C-C
bond in tetra-carbon ring is 1.468 Å while the one between
nearest-neighboring tetra-rings is 1.383 Å. ATGNRs and
ZTGNRs are obtained by cutting the T-graphene along
A and B directions in fig. 1(a). The geometrical struc-
tures of ATGNR and ZTGNR are shown in figs. 1(b)–(d),
where the red rectangles represent the unit cell of each
TGNR. The ribbon width N denotes the number of car-
bon dimer chains for ATGNRs and the number of tetra-
rings for ZTGNRs in each unit cell along the x-axis. As
shown in figs. 1(b) and (c), ATGNRs with width N can
be divided into two groups with respect to their symme-
tries: odd (even) N corresponds to asymmetric (symmet-
ric) ATGNRs. Moreover, all TGNRs are saturated by
Hydrogen atoms on the edges to eliminate the dangling
bonds.

Computational details. – The BSs were calculated
by means of both TB method and DFT method. In
the calculations of transport properties, non-equilibrium
Green’s function (NEGF) method combined with DFT
method is used to obtain the transmission spectrum and
current-bias voltage (I-Vbias) characteristics.

DFT and DFT/NEGF calculations are implemented
with Atomistix ToolKit (ATK) [15,16]. Generalized
gradient approximation (GGA) is used in the form
of Perdew-Burke-Ernzerhof (PBE) exchange correlation
functional [17]. The double-zeta polarized basis set of
local orbitals is employed in all DFT calculations and
the cutoff energy of numerical integration is set to be
150Ry. The vacuum slab is more than 10 Å. Geom-
etry optimization is implemented until the maximum-
forces and maximum-stress on the irons were less than
0.005 eV/Å and 0.005 eV/Å

3
, respectively. The first

Brillouin zone is sampled with grid spacing less than
0.04 Å

−1
in the Monkhorst-Pack scheme [18]. The I-Vbias

characteristics are calculated by means of Landauer-
Büttiker formula [19].

Fig. 2: (Colour on-line) DFT BSs for N = 2 up to 9 ATGNRs.

Band structures of ATGNRs from DFT. – Fig-
ure 2 shows DFT BSs of ATGNRs with different width
(N = 2–9). The BSs near the Fermi level are quite dif-
ferent for symmetric (N is even) and asymmetric (N is
odd) ATGNRs. In left column of fig. 2, the highest va-
lence band and the lowest conduction band of symmetric
ATGNRs meet at the Fermi level. More important, the
dispersion of band is linear, which is a unique feature of
massless Dirac fermions, e.g. graphene and topological
insulator [6,20]. Moreover, as the width of nanoribbon in-
creases, more Dirac points appear at the Fermi level. This
is quite different from graphene. Comparing to symmetric
ATGNRs, asymmetric ATGNRs show energy gaps at the
Fermi level as shown in right column of fig. 2. In order to
understand these DFT results, we next analytically show
the mechanism behind the above behaviors based on the
TB model.
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Fig. 3: (Colour on-line) The unit cells of (a) even N -ATGNR
and (b) odd N -ATGNR. In (a), the nearest-neighboring vec-
tors are marked with green. (c) BS from TB and (d) linear
dispersion relation around Dirac point for N = 2 ATGNR.
Constant terms for the eigenfunctions of N = 2, 4, 6, 8 and
N = 3, 5, 7, 9 ATGNRs are shown in (e) and (f), respectively.

Band structures of ATGNRs from TB. – AT-
GNR is a quasi–one-dimensional (1D) structure and the
unit cells of both symmetric and asymmetric ATGNRs
are shown in fig. 3(a) and (b), respectively. The periodic
boundary condition is taken along the x-axis and the lat-
tice vector can be written as a = a (1, 0), where a = 4.89 Å
is the lattice constant. The reciprocal lattice vector is
b = 2π/a (1, 0) and we calculate the BS in the direction
of Γ(0, 0)-X (π/a, 0). The nearest-neighboring vectors in
real space are given by

δ1 = l1 (1, 0) , δ2 = l1 (0, 1) ,

δ3 = l2
(
−
√

2/2,−
√

2/2
)
, δ4 = l2

(
−
√

2/2,
√

2/2
)
,

(1)

as shown in fig. 3(a). Here l1 = 1.468 Å and l2 = 1.383 Å
are lengths of the two types of C-C bonds. Other neigh-
boring vectors can be expressed by the negative ones of
the vectors in eq. (1), such as δ′ = −δ3.

TB parameters can be obtained by many methods, such
as quasi-atomic minimal basis set orbitals (QUAMBOs)
approach. By considering the effect of local environment
on the hopping integrals, QUAMBO-TB parameters can
provide very exact BS for graphene-based systems [21–23].
Here, we focus on the effect of structural symmetry on the
BSs and we need a simplified scheme of TB parameters
to get some analytical results. In our TB model, we only
consider the interaction of two nearest-neighboring atoms.
In terms of the analytical formula of hopping integral in
refs. [24,25], the C-C bonds of 1.468 Å and 1.383 Å in

our work induce variations of about −6.5% and +5% in
the hopping term of free graphene (2.7 eV), respectively.
The hopping integrals of 1.468 Å and 1.383 Å C-C bonds
are chosen to be t1 = 2.525 eV and t2 = 2.835 eV. The
on-site energy of all carbon atoms is set to be zero.

We study the Hamiltonian of even N -ATGNRs first.
According to ball and stick model shown in fig. 3(a), the
TB Hamiltonian for an ATGNR with even N is given by

HN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0 Hc 0 · · · 0
H†

c H0 Hc · · · 0

0 H†
c H0

. . .
...

...
...

. . . . . . Hc

0 0 · · · H†
c H0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The block matrix Hc is a 8×8 sparse matrix, all elements
in which equal zero except Hc (6, 5) = Hc (7, 8) = t1. The
block matrix H0 has the form of

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t1β 0 t1 0 0 0 t2α

t1β
∗ 0 t1 0 t2α

∗ 0 0 0
0 t1 0 t1β

∗ 0 t2α
∗ 0 0

t1 0 t1β 0 0 0 t2α 0
0 t2α 0 0 0 0 0 t1β

0 0 t2α 0 0 0 t1β 0
0 0 0 t2α

∗ 0 t1β
∗ 0 0

t2α
∗ 0 0 0 t1β

∗ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)
Here, α and β are defined by

α = exp (ik · δ3) = exp (ik · δ4) = exp (−0.4ikπ) ,

β = exp (ik · δ1) = exp (0.6ikπ) ,
(4)

where k = 2πk/a (1, 0) is the momentum vector, with 0 ≤
k ≤ 0.5.

We can obtain an analytical energy band for the case of
N = 2 based on eq. (2). The TB Hamiltonian for N = 2
is H2 = H0. By solving the eigenvalues of the matrix in
eq. (3), the equations of two energy bands near Fermi level
have the form of

E± = ±
∣∣∣∣−1

2
t1

− 1
2

√
5t21 + 4t22 − 4

√
t41 + Δt21t

2
2 + 2t21t

2
2

∣∣∣∣,
Δ = (α∗β)2 + (αβ∗)2 = 2 cos (2kπ) ,

(5)

where Δ is the function of k. The energy bands in
eq. (5) are shown in fig. 3(c). The position of Dirac point
(K in fig. 3(c)) is consistent with the one shown in fig. 2.
At the Dirac point, we have E (K) = 0. By expanding the
band equation in eq. (5) to the first order, i.e. k = K + q
with |q| � |K| and ignoring the high-order terms of |q|,
we can obtain the linear dispersion relation

E± (q) = ±vF |q| = ± 2at21t
2
2π

� |t1| (t21 + t22)

√
1 − t42

4t41
|q| , (6)
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where q is a small momentum measured from Dirac point
K. The energy bands of N = 2 ATGNR around K are
magnified and shown in fig. 3(d), which exhibits an exact
linear dispersion relation. vF is Fermi velocity and its
value is 5.1 × 106 m/s, which is close to the theoretical
value of graphene [26].

For arbitrary even N , the eigenfunction of the matrix
in eq. (2) can be written as(
f2NE2N + · · · + f2E

2+f1E+f0

)
×

(
f2NE2N + · · · + f2E

2−f1E+f0

)
= 0, (f2N �= 0) . (7)

This form is given out by computational software MATH-
EMATICA. We can obtain the analytical form of f0 for
arbitrary even N by using MATHEMATICA. When N
is small, analytical forms can also be obtained for other
coefficients, fi (i = 1, 2 · · ·).

Near the Dirac point, i.e. k = K + q with |q| � |K|,
the energy E satisfies the equation E (k) � 0. Expanding
eq. (7) and only keeping terms linear in E and zeroth-order
term in each bracket, we have

E± (k) = ± |f0/f1| . (8)

Based on this equation, we can obtain the linear dispersion
relation by calculating f0, f1 and ignoring the high-order
terms of |q|. For N = 4 ATGNR, f0 and f1 have the forms
of

f0 = 4πt41t
4
2

√
1 −

(
t22 − t21

2t21

)2

|q| , f1 = 4t51t
2
2 +6t31t

4
2, (9)

where |q| is the magnitude of q. Thus we obtain

E± (q) = ±vF |q| =

±

∣∣∣∣∣∣
4aπt41t

4
2

� (4t51t
2
2 + 6t31t

4
2)

√
1 −

(
t22 − t21

2t21

)2
∣∣∣∣∣∣ |q| . (10)

From the above equation, we deduce the Fermi velocity
vF � 2.6 × 106 m/s.

We next explain why the number of Dirac points in-
creases with N for even ATGNR. In eq. (7), the constant
term can be written as

FN
0 = f2

0 =⎧⎨
⎩tN2

⎡
⎣[N/4]∑

m=0

λm
m

(
t22 − Δt21

)N
2 −2m (

t21
)2m

⎤
⎦

⎫⎬
⎭

2

, (11)

λi
j = λi

j−1−λj−1
j−1C

i−j+1
N/2−2j+2 (j≥1, i ≥ j, λn

0 = 1 (n ≥ 0))

in which Δ has been given in eq. (5) and Ci−j+1
N/2−2j+2 is

a combinatorial number. If FN
0 equals to zero, E = 0

is the eigenvalue of the Hamiltonian in eq. (2). This
means valence and conduction bands meet at the vector
k, where E (k) = 0. So we can determine the positions of

Fig. 4: (Colour on-line) (a) I-Vbias curves of N = 6, 8 and 10
ATGNR devices (see the inset). (b), (c) Transmission spec-
tra under Vbias = 0.25 V and 0.45 V for N = 8 ATGNR. The
blue dashed lines in spectra represent the bias voltage win-
dows. (d) BS and (e) zero-bias transmission spectrum of N = 8
ATGNR. According to the magnitude of conductance, three ar-
eas (I, II, III) are marked.

Dirac points for arbitrary even N -ATGNR by the equa-
tion FN

0 (k) = 0. The curves of FN
0 for N = 2, 4, 6 and 8

ATGNRs are shown in fig. 3(e). The number and posi-
tions of the roots of FN

0 (k) = 0 are consistent with those
of Dirac points in DFT BSs shown in fig. 2.

For an odd N -ATGNR (fig. 3(b)), the TB Hamiltonian
(not given here) can be obtained easily and the eigenfunc-
tion of the Hamiltonian has the form

f4Nx4N + · · · + f1x + f0 = 0, (f4N �= 0) . (12)

And the curves of f0 for N = 3, 5, 7 and 9 are shown in
fig. 3(f). f0 never equals zero and there will be no bands
appearing at the Fermi level, resulting in the band gaps.

The TB calculations indicate clearly that the occurrence
of multiple Dirac points in even width ATGNRs is due
to the mirror symmetry with respect to the midplane be-
tween two edges and the band gaps in odd width ATGNRs
are induced by the structural broken-symmetry.

Transport properties of ATGNR devices. – In or-
der to investigate the transport properties of ATGNRs un-
der a bias voltage (Vbias), the first-principle calculations
of I-Vbias curves were performed by using a two-probe de-
vice (the inset of fig. 4(a)), where the left (L) and right
(R) leads are semi-infinite ATGNRs and the length l of
central region (C) is of 6 unit cells. The I-Vbias curves
for N = 6, 8 and 10 ATGNRs are shown in fig. 4(a) and
nearly regardless of the central region length l. These
results suggest that negative differential resistance phe-
nomenon (NDR) can exist in these devices. Taking the
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Fig. 5: (Colour on-line) (a) I-Vbias curves of N = 2, 3, 4,
5 and 6 ZTGNR devices (see the inset) and N = 7 ZGNR
device. (b) Transmission spectra under Vbias = 0 V and 0.3 V
for N = 2 ZTGNR device. The blue dashed lines represent the
bias voltage windows. (c) BS of N = 2 ZTGNR. (d) BSs of
N = 3, 4, 5 and 6 ZTGNRs.

N = 8 ATGNR device as an example, current decreases
when bias increases from 0.25V to 0.45V. From the 0.25V
and 0.45V transmission spectra for N = 8 ATGNR device
(figs. 4(b) and (c)), conductance at the Fermi level drops
from about 5.6 G0(G0 = 2e2/h is conductance quantum)
at 0.25V to about 1.0 G0 at 0.45V. This conductance
reduction can be attributed to the BS (fig. 4(d)) and 0V
transmission spectrum (fig. 4(e)). Around the Fermi level
(area I in fig. 4(d)), energy bands appear in this area for six
times, providing a conductance of 6.0 G0 (fig. 4(e)) in the
same area. However, energy band appear only one time
in area III in fig. 4(d) and contributes only conductance
of 1.0 G0 (fig. 4(e)). In area II, the conductance decreases
from 6.0 G0 to 1.0 G0 as shown in fig. 4(e). This character-
istic in band structure means that the number of electron
tunneling channels reduces when the bias increases from
0.25V to 0.45V. So, current decreases in the Vbias range
from 0.25V to 0.45V. This result suggests that NDR can
be introduced in homogenous systems through a method
of band structure engineering.

Transport properties of ZTGNR devices. – Simi-
larly, two-probe devices of ZTGNRs (inset of fig. 5(a)) are
constructed to study the transport behaviors of ZTGNRs
under Vbias. Figure 5(a) shows the I-Vbias curves of
ZTGNRs with different widths and these curves are nearly
independent on the length l. When |Vbias| is not very large,
all I-Vbias curves are linear and have larger slopes than

Fig. 6: (Colour on-line) BSs of two leads and transmission
spectra under Vbias of 0.2 V and 0.5 V for (a) N = 4 ZTGNR
and (b) N = 6 ZTGNR. The value of Vbias is represented using
blue numbers. It is necessary to point out that the curve“Δ”
in (a) and (b) contains two bands.

the I-Vbias curve of N = 7 zigzag graphene nanoribbon
(ZGNR) in fig. 5(a). These results arise from the large con-
ductance of ZTGNRs around the Fermi level. For exam-
ple, 0V and 0.3V transmission spectra of N = 2 ZTGNR
(fig. 5(b)) exhibit a conductance of 2 G0, which can be
further confirmed by the BS of N = 2 ZTGNR (fig. 5(c)).
From the BSs of ZTGNRs in fig. 5(d), the larger slopes
and linearity near Vbias = 0V of I-Vbias curves can be
understood.

When |Vbias| increases, I-Vbias curves of N = 2, 3
and 6 ZTGNRs remain linear while that of N = 4 and
5 ZTGNRs exhibit bending at the critical |Vbias| (Vc) of
0.3V and 0.8V, respectively. Taking the N = 4 and 6
ZTGNRs as examples, we discuss the origin of the differ-
ence between these two kinds of I-Vbias curves. Under cer-
tain Vbias of 0.2V (smaller than Vc of N = 4 ZTGNR) and
0.5V (larger than Vc of N = 4 ZTGNR), BSs of two leads
and transmission spectra for N = 4 and 6 ZTGNR devices
are shown in figs. 6(a) and (b). BS of left (right) lead is
obtained by shifting the BS of corresponding ZTGNR with
−Vbias/2 (Vbias/2) for that the chemical potential of left
(right) lead is set to be −Vbias/2 (Vbias/2) when we cal-
culate the current under a certain Vbias by using ATK.
In figs. 6(a) and (b), blue dashed (red dotted) line indi-
cates the position of the chemical potential of left (right)
lead and the yellow region is the integrating window for
calculating current.

For N = 4 ZTGNR, the top of π band in left lead is
higher than the chemical potential of right lead and the
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bottom of π∗ band in right lead is lower than the chemi-
cal potential of left lead when Vbias is 0.2V, as shown in
fig. 6(a). So under Vbias of 0.2V, conductance is always
4 G0 in the integrating window (0.2V transmission spec-
trum in fig. 6(a)). However, the top (bottom) of π (π∗)
band in left (right) lead locates in the integrating window
when Vbias is 0.5V, resulting in a conductance reduction in
area I and II in the 0.5V transmission spectrum (fig. 6(a)).
Due to the conductance reduction in the integrating win-
dow, the rate of current increasing becomes smaller when
|Vbias| increases beyond the Vc, leading to the bending. For
N = 6 ZTGNR (fig. 6(b)), the π (π∗) band in left (right)
lead keeps out of the integrating window when |Vbias| in-
creases, resulting in an unchanged conductance of 4 G0

in the integrating window (0.2V and 0.5V transmission
spectra in fig. 6(b)). The constant conductance of 4.0 G0

provides a linear current increasing for N = 6 ZTGNR
when |Vbias| increases, as shown in fig. 5(a).

Conclusion. – In conclusion, the band structures of
ATGNRs exhibit a dependence on the mirror symmetry
of the ribbon. Dirac-like fermions are found to exist in
the symmetric ATGNRs while asymmetric ATGNRs have
energy gaps in the band structures. Furthermore, the
number and positions of Dirac points for arbitrary even
width ATGNR are determined by the constant term of
the eigenfunction of the Hamiltonian. The example of
ATGNRs indicates that a large number of low-dimensional
carbon-based materials with unique properties similarly
to graphene await discovery and investigation. NDR phe-
nomenon and linear I-Vbias characteristic are found to ex-
ist in the two-probe devices constructing from ATGNRs
and ZTGNRs, respectively. Both these properties may
play important role in the application of TGNRs in future.

∗ ∗ ∗

This work was supported by the National Nat-
ural Science Foundation of China (NSFC51032002,
NSFC11247033, NSFC11374162 and NSFC11347129),
the key project of National High Technology Research
and Development Program (“863” Program) of China
(2011AA050526), the Science and Technology Support
Plan of Jiangsu Province (BE2011191).

REFERENCES

[1] Novoselov K. S., Geim A. K., Morozov S. V.,

Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V.

and Firsov A. A., Science, 306 (2004) 666.

[2] Novoselov K. S., Geim A. K., Morozov S. V.,

Jiang D., Katsnelson M. I., Grigorieva I. V.,

Dubonos S. V. and Firsov A. A., Nature, 438 (2005)
197.

[3] Zhang Y., Tan Y.-W., Stormer H. L. and Kim P.,
Nature, 438 (2005) 201.

[4] Geim A. K. and Novoselov K. S., Nat. Mater., 6 (2007)
183.

[5] Geim A. K., Science, 324 (2009) 1530.
[6] Castro Neto A. H., Guinea F., Peres N. M. R.,

Novoselov K. S. and Geim A. K., Rev. Mod. Phys., 81
(2009) 109.

[7] Liu Y., Wang G., Huang Q., Guo L. and Chen X.,
Phys. Rev. Lett., 108 (2012) 225505.

[8] Malko D., Neiss C. and Görling A., Phys. Rev. B, 86
(2012) 045443.
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