CrO$_2$ thin films epitaxially grown on TiO$_2$ (001): Electronic structure and magnetic properties

Xing Huang, X. H. Yan, Z. H. Zhu, Y. R. Yang, and Y. D. Guo

1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

(Received 1 October 2010; accepted 5 January 2011; published online 28 March 2011)

CrO$_2$ thin films epitaxially grown on the rutile TiO$_2$ (001) substrate are studied via density function theory. Due to the strain from the substrate, a semiconductor to half-metal transition with the film growth is observed. It is found that, as the film is thicker than three atomic layers, the half-metallic property can be retained with an antiferromagnetic feature which reduces the total magnetic moment. With the help of ionic and the double exchange picture, the physics behind the half-metallic rebuilding process is revealed. © 2011 American Institute of Physics. [doi:10.1063/1.3552991]

I. INTRODUCTION

As one kind of typical half-metallic (HM) materials, CrO$_2$ with nearly 100% spin polarization near the Fermi level (E_F) has received much attention for spintronics application. A limitation is its stability due to the fact that the CrO$_2$ phase can be easily transformed into more stable Cr$_2$O$_3$ phase by the heat treatment. Recently, rutile TiO$_2$ substrate has been used successfully to stabilize the CrO$_2$ epitaxial film because of fine lattice match (4% mismatch along the a,b axis and ~1.5% along the c axis). Also, the wide bandgap of about 3.0 eV of TiO$_2$ makes CrO$_2$-TiO$_2$-CrO$_2$ junction good candidate of tunneling magnetoresistance (TMR) device, with an infinite TMR ratio predicted by the Julliere model. Additionally, many studies show that the magnetic properties may change with film thickness, indicating that the epitaxial film may display different features compared with the bulk phase. To date, CrO$_2$ film epitaxially grown on the TiO$_2$ (001) substrate has been successfully prepared by chemical vapor deposition. It is well known that the stretching in the TiO$_2$ (001) surface is larger than that in (100) and (110) ones. Whether the epitaxial film could retain the HM property under the substrate-induced strain has not yet been clarified, and what new feature it would display remains to be explored.

II. CALCULATION DETAILS

In our calculations, 1–6 layer CrO$_2$ thin films grown on the TiO$_2$ (001) substrate are investigated. The slab models are used, in which the vacuum thickness is kept larger than 10 Å. The generalized gradient approximation (GGA) is applied for exchange-correlation effects, and the projector augmented wave potential is used to describe the interaction between atoms and electrons. At the surface Brillouin zone, a 10×10 grid of \mathbf{k} points is sampled based on the Monkhost–Pack scheme. During the relaxation, we fix three bottom layers of the TiO$_2$ substrate, and allow all the other atoms to move, until the residual forces acting on atoms are less than 0.01 eV/Å. Since earlier studies show that the correlation effect between the Cr 3d electrons would modify the electronic structure of CrO$_2$ bulk and the (001) surface, we also perform DFT+U calculations to improve the reliability of our results.

III. RESULTS AND DISCUSSIONS

The optimized structures of thin films are shown in Fig. 1. Each film keeps its rutile configuration, expect for a visible relaxation at the surface. In each film, two O atoms at the top layer move along the [110] direction close to the top Cr, and go upward along the [001] axis, while the top Cr atom moves downward. This makes the top Cr stay in a distorted tetrahedron. Moreover, the surface structure changes with the film’s thickness. In Table I, the bonds length and angles formed by the O and Cr atoms at the surface are listed. One can see that the bond angle of Cr–O–Cr varies from 129.2° to 113.3° with the film growing. This angle and the O–Cr–O angle decrease rapidly in 1–3 layer films, and is nearly constant in the other thicker films, implying that a stable phase appears. Compared with the unsupported (unstrained) surface structure of CrO$_2$ obtained by Hong et al., there is a 10° reduction in the O–Cr–O angle for the six-layer epitaxial film, which shows an obvious difference between the strained and unstrained surfaces.

Figure 2 shows the density of states (DOS) of each film. As shown in Fig. 2(a), the one-layer film displays the HM feature. The majority states near the E_F can be traced to the Cr 3d orbitals, while the minority states of Cr 3d are directly pushed away from the low-lying O 2p states, leaving a gap near the E_F due to the d-d exchange interactions. The film’s magnetic moment is found to 2.0 μ_B, consistent with its HM behavior. However, such an HM phase would disappear when the film becomes thicker. As shown in Fig. 2(b), a gap of about 0.4 eV of spin-up states shows that the bilayer film is a narrow-band semiconductor. In Figs. 2(c)–2(f), both spin-up and spin-down states are found to spread across the E_F, indicating the absence of the HM phase.

The results described above are obtained by the GGA approximation. Next we will take the Hubbard parameter U
and exchange parameter J into account, to examine the correlation effect on the electronic and magnetic properties of CrO2 films. The value of U and J are suggested by Korotin et al.17 to be 3.0 and 0.87 eV, respectively. The electronic structures obtained by these two parameters are in good agreement with the experimental measurements.5,18 As shown in Figs. 3(a)–3(f), within the DFT+U, a larger splitting gap is found for spin-down states of each film. When the correlation effect is included, the HM phase of the one-layer film is changed to the semiconductor phase. For the bilayer film, the spin-up gap splits further to 1.2 eV. A metal-semiconductor transition happens in the three-layer film. More importantly, in the four-layer and thicker films, the metallic conductor transition happens in the three-layer film. The remaining two O atoms forming an octahedron. The octahedron splits the Cr 3d orbitals into a \(e_g \) doublet and a low-lying \(t_{2g} \) 17–20 based on CF theory.21 However, this picture will change when the CrO2 (001) surface forms. Due to the removal of two O atoms at the surface, the top Cr becomes four-coordinated. The four neighboring O form a tetrahedron, and the top Cr shifts down and stay in the center of the tetrahedron. According to the CF theory,21 the tetrahedron makes the \(t_{2g} \)-\(e_g \) inversely split (see Fig. 1(h)) which has been found in the unstrained surface.17 That is to say, the remaining two Cr 3d electrons occupy the low-lying \(e_g \) orbitals, leave the \(t_{2g} \) triplet above \(E_F \) empty, and contribute 2 \(\mu_B \).18

In the one-layer epitaxial film, the top Cr provides 2 \(\mu_B \) and behaves as Cr4+. Such ionic behavior is similar to the result obtained from the unstrained surface.18 As shown in Fig. 4, the dashed curve shows the local density of states (LDOS) of the Cr 3d majority states calculated by the alone GGA method. Very clearly, \(e_g \) and \(t_{2g} \) states are found mainly to be divided by the \(E_F \) with a tiny overlap. When the \(U \) parameter is included, the \(t_{2g} \) states are fully separated (see solid curve in Fig. 4). The gap is somehow smaller than the result of 1.2 eV obtained from the unstrained surface.18 Noticed that the O–Cr–O bond angle (shown in Table I) is

![Diagram](image_url)

TABLE I. Structural parameters of the supported CrO2 thin films. Cr–O–Cr and O–Cr–O angles are labeled in Fig. 1. “Distance13” is the distance between Cr1 and Cr3 and “distance12” is the distance between Cr1 and Cr2, and so on.

<table>
<thead>
<tr>
<th>Layers</th>
<th>Cr–O–Cr angle (deg.)</th>
<th>O–Cr–O (deg.)</th>
<th>Distance13 (Å)</th>
<th>Distance12 (Å)</th>
<th>Distance23 (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>129.2</td>
<td>158.3</td>
<td>2.79</td>
<td>3.37</td>
<td>3.76</td>
</tr>
<tr>
<td>2</td>
<td>117.9</td>
<td>142.0</td>
<td>2.69</td>
<td>3.40</td>
<td>3.67</td>
</tr>
<tr>
<td>3</td>
<td>113.3</td>
<td>136.7</td>
<td>2.66</td>
<td>3.42</td>
<td>3.61</td>
</tr>
<tr>
<td>4</td>
<td>115.1</td>
<td>135.9</td>
<td>2.42</td>
<td>3.38</td>
<td>3.57</td>
</tr>
<tr>
<td>5</td>
<td>115.5</td>
<td>136.4</td>
<td>2.42</td>
<td>3.38</td>
<td>3.57</td>
</tr>
<tr>
<td>6</td>
<td>114.4</td>
<td>136.0</td>
<td>2.46</td>
<td>3.40</td>
<td>3.56</td>
</tr>
</tbody>
</table>
158°, about 8° larger than in the unstained surface, and thus the decrease in the bandgap may be attributed to the distortion of the O tetrahedron. For a Cr ion in an ideal tetrahedron, the O–Cr–O angle is 109.5°, which causes a full splitting between t_{2g} and e_g states. When the bond angle increases, the Coulomb interaction between e_g orbitals and two apex O will become stronger, and therefore reduce the energy difference between e_g and t_{2g} states, as well as the bandgap.

We next will discuss the behavior of two-layer CrO$_2$ film supported on the TiO$_2$ surface. In Figs. 5(a) and 5(b), we plot the LDOS of the 3d states of top Cr and sublayer Cr, respectively. For majority states, a gap of 1.3 eV is found for the top Cr while a 1.2 eV gap for the sublayer Cr. Moreover, the distribution of the occupied states near the E_F for the sublayer Cr is much more crowded than that for the top Cr, which implies that the sublayer Cr makes a larger contribution to the magnetic moment. The local magnetic moment of the sublayer Cr is 2.9 μ_B, which is much larger than the value of 1.1 μ_B for the top Cr. The above results suggest that the top Cr behaves as a Cr$^{5+}$ ion, which provides one extra electron to the bond with the neighboring O, while the Cr in the sublayer is in d^3 configuration of Cr$^{3+}$. Such charge transfer could also be understood by the change in CF when a surface forms. As shown in Table I, the decrease in the O-Cr-O angle enlarges the O-Cr distance (between top O and sublayer Cr) rapidly to 2.25 Å, which is longer than the distance of 1.69 Å between the O and the top Cr. Thus the O-Cr coordinations are weakened, and the sublayer Cr takes back one more electron around it. Meanwhile, the octahedron CF surrounding the sublayer Cr is also weakened and therefore reduces the energy level of t_{2g}, which is finally occupied by the remaining three electrons below the E_F. This ionic picture explains the appearance of the 1.2 eV gap in the LDOS of sublayer Cr.

<table>
<thead>
<tr>
<th>Layers</th>
<th>$M_{\text{unstrained}}$ (μ_B)</th>
<th>$M_{\text{DFT+U}}$ (μ_B)</th>
<th>Conduction type</th>
<th>Gap$_{\text{majority}}$ (eV)</th>
<th>Gap$_{\text{minority}}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.00</td>
<td>SC</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4.00</td>
<td>SC</td>
<td>1.2</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4.00</td>
<td>SC</td>
<td>0.3</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>6.00</td>
<td>HM</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8.00</td>
<td>HM</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>10.00</td>
<td>HM</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 2. (Color online) DOS of the thin films obtained from the alone GGA calculations. (a)–(f) represent 1–6 layer CrO$_2$ films.

FIG. 3. (Color online) DOS of the thin films obtained from the DFT+U calculations. (a)–(f) correspond to 1–6 layer films.

FIG. 4. (Color online) LDOS of the Cr 3d for the one-layer film. The solid (red) and dash (green) curves represent the DFT+U result and the alone GGA one.
For the three-layer and thicker films, the ionic behavior of the Cr at surface can also be found with a similar feature. That is to say, the top two layers cannot provide conduction bands. On the other hand, the well formed O octahedron [see Fig. 1(ii)] around the Cr$^{4+}$ in the deeper layer (third layer, fourth layer, and so on) splits the 3d orbitals with t_{2g} low-lying, as seen in the CrO$_2$ bulk. However, the reason for the reduced magnetic moment is still unclear. To better understand the magnetic distribution, we show the spin charge density in Fig. 6. First, we found the spin charge density is mainly distributed around the Cr atoms in each film, whereas the TiO$_2$ substrate displays no magnetism. Second, the magnetic moment provided by each deeper layer Cr is found to be 2 μ_B as in the bulk case, strongly implying that the magnetic reduction is a surface effect. Third, a magnetic moment reversion around the top Cr can be observed when we compare Fig. 6(b) with Fig. 6(c). The reversion is responsible for the total magnetic moment reduction. As identified before, the only 3d electron around the top Cr contributes 1 μ_B to the total magnetic moment. When the spin changes to the opposite direction, 2 μ_B is cut down from the total magnetic moment, and makes an antiferromagnetic (AFM) surface.

This AFM behavior can be interpreted by the Heisenberg model, which has been used to determine the exchange interaction between the Cr$^{4+}$ ions in bulk CrO$_2$. In this model the exchange energy between the neighboring atoms can be described as $E_{ij} = -A_{ij} S_i \cdot S_j$, where S_i, S_j correspond to the spin angular momentum of the electron in atoms i, j, and A_{ij} corresponds to the exchange integral. The prefactor A_{ij} is very sensitive to the distance between atoms i and j.

Table I lists the distance between the top Cr and the nearest Cr (Cr ion in the third layer), which is labeled as “Distance13.” When the film grows to three atomic slices, the Distance13 is found to be 2.66 Å, which is smaller than the value of 2.92 Å in the bulk phase. This reduction in the distance makes A_{ij} negative, and finally leads to an AFM coupling at the surface.

In our calculation, the half-metallic property seems to be rebuilt when the layer number increases to 4. This can be attributed to the appearance of the bulk phase. According to the double exchange mechanism, in bulk, the t_{2g} orbitals provided by different Cr are strongly coupled with O 2p orbital, which builds the conduction bands. We show the band structure of the films in Fig. 7, where (a)–(d) correspond to one-layer, three-layer, four-layer, and six-layer epitaxial film, respectively. In Figs. 7(a) and 7(b), one can see that films thinner than three atomic slices are semiconductor. When the CrO$_2$ layer number increases to four, two spin-up bands are found to cross the E_F [see Fig. 7(c)]. These two bands originate from the t_{2g} orbitals of the Cr in the third and fourth layer (partially from O 2p), implying that the double exchange process begins to take place. Also, these two bands induce the semiconductor-HM transition. As the film thickness grows further, more spin-up bands are found to couple with each other near the E_F and finally make the HM behavior of the strained film strengthened, as shown in Fig. 7(d).

Furthermore, a highly dispersive band (marked with red dots) can be seen below the E_F in each film. We find that this band mainly arises from the bottom surface of the TiO$_2$ substrate, which would reduce the gap width of minority state. This could be considered as a model effect, and the gap width of each slab needs to be corrected. The corrected bandgap is shown in Table II.

IV. CONCLUSION

First principle calculations are carried out for the CrO$_2$ thin films epitaxially grown on the TiO$_2$ (001) substrate. We find the TiO$_2$ substrate plays an important role in determining the electronic properties of the epitaxial film. On one hand, it helps the CrO$_2$ layers to keep the rutile structure. On the other hand, the strain from the TiO$_2$ substrate changes the electronic structure of CrO$_2$ (001) surface significantly, and leads to an AFM surface for the three-layer and thicker films. The AFM behavior can be considered as a strain-induced surface effect, and if the film is thicker than three atomic layers, the Cr ions in the deeper layers would behave as in the bulk phase. With the growing number of the CrO$_2$ layers, the double exchange process between the Cr 3d electrons begins to take place, and finally rebuilds the half-

![Figure 5](image_url)
FIG. 5. (Color online) LDOS of the Cr 3d for the bilayer film.

![Figure 6](image_url)
FIG. 6. (Color online) Spin charge density of each film. (a)–(f) represent 1–6 layer CrO$_2$ films.
metallic property and increases magnetic moment. Our results will be of significant importance in the preparation and spintronics application of CrO$_2$ thin films.

ACKNOWLEDGMENTS

We would like to thank Dr. Y. Xiao for helpful suggestions. This work was supported by National Natural Science Foundation of China (Grant Nos. NSFC51032002 and NSFC10874089) and partly by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2008398).

